Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 9(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498432

RESUMO

Recent advancements in stem cell therapy have led to an increased interest within the auditory community in exploring the potential of mesenchymal stem cells (MSCs) in the treatment of inner ear disorders. However, the biocompatibility of MSCs with the inner ear, especially when delivered non-surgically and in the immunocompetent cochlea, is not completely understood. In this study, we determined the effect of intratympanic administration of rodent bone marrow MSCs (BM-MSCs) on the inner ear in an immunocompetent rat model. The administration of MSCs did not lead to the generation of any oxidative stress in the rat inner ear. There was no significant production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and IL-12, due to BM-MSCs administration into the rat cochlea. BM-MSCs do not activate caspase 3 pathway, which plays a central role in sensory cell damage. Additionally, transferase dUTP nick end labeling (TUNEL) staining determined that there was no significant cell death associated with the administration of BM-MSCs. The results of the present study suggest that trans-tympanic administration of BM-MSCs does not result in oxidative stress or inflammatory response in the immunocompetent rat cochlea.

2.
Anat Rec (Hoboken) ; 303(3): 487-493, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30632683

RESUMO

Mesenchymal stem cell (MSC) therapy is an emerging treatment modality for various human diseases. Although induced pluripotent stem cells have been explored for the restoration of hearing, the potential of MSCs as a therapeutic strategy for various cochlear insults is not precisely known. MSCs possess anti-inflammatory, anti-apoptotic and neuroprotective properties, making them an attractive target for the treatment of inner ear disorders such as hair cell damage in response to inflammation. Most of the previous studies have used immunosuppression or the complex surgical techniques to deliver stem cells into the cochlea. However, no information is available regarding the biocompatibility and safety of MSCs in the inner ear in immunocompetent cochlea. The aim of the present study was to determine the effect of non-surgical administration of rodent bone marrow derived MSCs (BM-MSCs) through transtympanic delivery on the cochlear function and to assess any adverse effects on the auditory system employing a rat model without immunosuppression. We observed that the transtympanic administration of BM-MSCs has no significant effect on the hearing thresholds as determined by auditory brainstem response and distortion product otoacoustic emissions. Histopathological examination revealed no recruitment of inflammatory leukocytes and edema in the cochlea of BM-MSCs administrated rats. The results of this study suggest that transtympanic administration of BM-MSCs is safe and can be explored in providing otoprotection against cochlear insults. Anat Rec, 303:487-493, 2020. © 2019 American Association for Anatomy.


Assuntos
Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , Animais , Cóclea/fisiopatologia , Feminino , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...